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Abstract-A general nonself-adjoint eigenvalue problem is examined and it is shown that the commonly employed
approximate methods, such as the Galerkin procedure, the method of weighted residuals and the least square
technique lack variational descriptions. When used in their previously known forms they do not yield stationary
eigenvalues and eigenfunctions. With the help of an adjoint system, however, several analogous variational
descriptions may be developed and it is shown in the present study that by properly restating the method of
least squares, stationary eigenvalues may be obtained. Several properties of the adjoint eigenvalue problem,
known only for a restricted group, are shown to exist for the more general class selected for study.

1. INTRODUCTION

THE investigation of the eigenvalues of a nonself-adjoint differential operator may be
facilitated by the vanational method if the concept of adjoint system is introduced. The
idea was seemingly first suggested by Morse and Feshbach [IJ and further explored success­
fully by Chandrasekhar [2J in his studies of hydrodynamic stability. In spite of this success
in hydrodynamic and hydromagnetic stability problems, the idea does not seem to have
attracted the attention of researchers in nonconservative stability problems of elastic
solids. In a previous study [3J the authors have discussed how an adjoint system to the
problem of an elastic continuum subjected to purely follower-type surface tractions may
be constructed. It was shown that the two sets of eigenvalues of the original and the adjoint
systems are identical and that each member of the set is a stationary value for a variation
of the displacement functions.

In this study we suggest several formulations of the variational description of the
eigenvalues of a complex differential equation in which the eigenvalues appear in the
coefficients of the operator as analytic functions. In this form the eigenvalue problem is
much more involved than the problems outlined by Morse and Feshbach [IJ, Chandra­
sekhar [2J and Roberts [4]. Their results are restricted to regular eigenvalue problems and
are not applicable directly to the present case. The treatment ofthe present study is believed

t This work was supported in part by AFOSR Grant 70-1905 and NASA Grant NGL 05-020-397 to Stanford
University. and NSF Grant GK-3092 to the University of Mississippi.
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30 SHYAM N. PRASAD and GEORGE HERRMANN

to yield all the main results, however, in modified forms, of the regular systems discussed
by earlier authors [1,2,4, 5]'t

The need for developing such approximate methods of solving more general non­
conservative stability problems which, on one hand, would be based at least partially on
a firm mathematical foundation, and, on the other hand, would provide effective means
for numerical treatment, has been emphasized by Bolotin [6], Herrmann [7] and several
other authors in aeroelasticity [8,9]. In the past, the trend has been to employ the method
of Galerkin which, unfortunately, does not provide an estimate of the order of magnitude
of the error involved, nor does it, in general, guarantee convergence. The proof of con­
vergence of the Galerkin method for nonself-adjoint boundary value problems has been
given for only a few simple problems [10-13]. Past studies indicate that several attempts
were made to formulate variational principles by other means for nonself-adjoint and
nonlinear systems. These formulations, however, are found to lack the advantages of
genuine variational principles, mainly because the integral is not stationary or because
no variational integral exists. Examples may be cited in recent works of Glansdorff and
Prigogine, known as the method oflocal potential, and in Biot's Lagrangian thermodynamics.

Another aspect of the present study is a comparison of several different approximate
methods, namely, the Galerkin procedure and the method of weighted residuals, with the
proposed variational method. It will be shown that these other methods become meaningful
as special cases of the proposed method only under special circumstances and in general
they do not possess the advantages of variational principles. Additionally, it turns out
that with the help of adjoint systems, a reformulation of the method of least squares may
be made, which yields stationary eigenvalues of the system. Particularly, this latter finding
is believed to be of considerable interest and in a future study it is proposed to explore
these various methods numerically.

2. STATEMENT OF PROBLEM

Consider the following form of an ordinary linear differential equation:

Pu = wQu

where

(1)

N dn
P = I aN-n(x)-dn

n=O X

K dn
Q = I f3K-n(X, w)-dn'

n=O X

K ::; N.

(2)

In the above, u denotes a function of a real variable x for a ::; x ::; b, and an and f3n are
continuous functions ofx whose N - n derivatives with respect to x exist and are continuous.
Further, ao does not vanish at any point of the closed interval (a, b).

Although the parameter w may be regarded as the eigenvalue of the system, in stability
analysis it usually denotes frequency of small oscillations. Equation (1) thus defines a

t When the present manuscript was completed, the authors' attention was drawn to the studies of Biot [26J
and Flax [27J who also employed the concept of adjoint operator. Their studies, however, were restricted to the
static problem of aeroelastic divergence.
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wide range of one-dimensional, dynamical systems of autonomous elastic bodies whose
motion follows the form u(x) eiwt

. The operator Q is a complex-valued analytic function
of wand its origin is due to velocity-dependent forces in the system. Serious doubts have
been raised in the past regarding the validity of solutions of that group of problems in
which the forces are idealized to be of purely follower type. The role played by velocity­
dependent forces in influencing stability of equilibrium of nonconservative elastic systems
has been recognized to be especially intriguing [6,7]. Consequently, in many problems
the analysis will have to include terms originating from Coriolis acceleration or from other
gyroscopic effects, viscous damping, etc. The operator Q, therefore, encompasses the effect
of such forces and the definition (1) is believed to be fairly general. Note that in the absence
of velocity-dependent forces Q == 1.

Associated with (1) we consider N linear, homogeneous, boundary conditions in
u(a), u'(a), ... , u(N-I)(a), u(b), u'(b), ... , u(N-1)(b) as given by

where

Lp = 0, j = 1,2, ... N (3)

(4)

'lin and Bin are quantities characterizing certain properties (such as stiffness or inertia)
at the end points (a, b). Bin may, further, be assumed to be continuous, single-valued
functions of w. For future use let us define N additional forms L N+ I U, ... L 2NU in
ui(a), ui(b) so that L 1u, L 2u, . .. , L 2NU are linearly independent.

From (1) we obtain, after integrating by parts,

f {u*[Pu-wQuJ-u[P*u*-wQ*u*]}dx = [PI(U,U*)J~ (5)

where

(6)

K :$; N (7)

and [PI(U,U*)J~ is a bilinear form in u(a), u'(a), ... ,dN-I)(a), u(b), ... ,dN-I)(b) and
u*(a), u*'(a), . .. , U*(N -I)(a), u*(b), . .. , U*(N - I)(b). We may write

2N
[PI (u, u*)J~ = L LnuLiN + l-nU*

n=1

(8)

in which L:u* are linear in u*(a), u*'(a), ... , u*(N-I)(a), u*(b), ... , u*(N-I)(b). By virtue
of (3), N terms of the right-hand side of (8) will be zero and therefore the remaining N
terms will also be zero if we select N adjoint boundary conditions of the type

Lju* = 0, j = 1,2, ... , N (9)

where L j may be written in the following general form:

N-I dn
Lj = L {Yfjn+wBjn}-dn·

n=O X
(10)
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Note that the parameters I]jn' ejn will depend upon the choice of the additional N linearly
independent forms of LN + 1 , LN + 1 ' ... , L1N • Since these N additional conditions may be
arbitrarily selected, with the only restriction of being linearly independent, the adjoint
boundary conditions are not unique. Therefore, the adjoint boundary value problem is
not uniquely defined. By way of illustration, this fact was apparently brought into attention
for the first time by Roberts [4]. Of course, I]jn and ejn will be functions of I]jn, e jn , (l.n and
Pn of the original problem.

Thus, we have obtained the following system as being an adjoint to the eigenvalue
problem defined by (1) and (3):

P*u* = w*Q*u*

with the boundary conditions

N-l dn *
* * - " f * *e* } u - 0L j u = L.tl]jn+ W .in -dn - ,

n=O X
j= 1,2, ... ,N.

(11)

(12)

We note the following property of u, u*:

f u*[Pu-wQu] dx = f u[P*u* -wQ*u*] dx.

3. PROPERTIES OF ADJOINT SYSTEMS

(13)

Let {w;} and {u;} denote, respectively, the sets of eigenfrequencies and eigenmodes of
the original and {wn and {un those of adjoint systems. We will suppose that both sets
of eigenmodes {u j } and {un span the domain defined by the independent variable x.

The development of a variational principle for system (1)-(4) begins with the proof of
the two sets of eigenvalues {w;} and {wn being identical. We supply the proof in the
following manner. Let us select an arbitrary eigenvalue Wi of the original problem whose
corresponding eigenfunction is ui • Since the adjoint system is governed by an Nth order
differential equation and, therefore, possesses N linearly independent solutions, we can
find for this value of w a function ut which satisfies any set of N - 1 members of N boundary
conditions (9). One then shows that the function ut must necessarily also satisfy the
remaining Nth boundary condition and hence is an eigenfunction of the adjoint system
whose eigenvalue is wt = Wi' The crux of the problem lies in proving that if the Nth
boundary conditions is not satisfied it gives rise to a contradiction. As we will learn later,
this contradiction is a statement that the set of eigenfunctions {u;} is a trivial set, i.e.
{u;} == O.

Let us assume that we have constructed a solution ut of (11) with w* = Wi' which
satisfies only N - 1 boundary conditions

Ljut = 0, j = 1,2, ... , N; j =f- I. (14)

We now prove that L,ut must also be zero. To do this, multiply (1) and (11) by ut and ui ,

respectively, and integrate over the interval (a, b). Then we subtract one of the resulting
equations from the other to yield

(15)
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by virtue of (13). If we use, now, the boundary conditions of Uj and ut, we have

33

(16)

(18)

Thus, if LN+/u j =I- 0, then we have Ltut = 0, so that Wi is an eigenvalue of the adjoint
system. On the other hand, if LN+/u j = 0, the number of linearly independent boundary
conditions to be satisfied by the original system would be arbitrarily larger than Nand,
therefore, the set of eigenfunctions {u;} would be trivial. Consequently, {w;} and {wt}
are identical sets ofeigenvalues. For illustration, consider the following eigenvalue problem:

d4 u d 2u du
-+F2 -+2if3Fw--w2 u = 0, °< x < 1 (17)
dx 4 dx 2 dx

du
u = - = ° at x = °dx

d 2u d 3u
- = - = ° at x = 1.dx2 dx 3

System (17), (18) is nonself-adjoint and governs over-all motions of a cantilevered elastic
pipe conveying an incompressible fluid at a constant velocity [14]. An adjoint system to
(17), (18) may be described by the following set of equations:

(19)

du*
u* = - = ° at x = °dx

(20)

d 3 u* du*
--+F2 --2if3Fw*u* = ° at x = 1.
dx 3 dx

Following the procedure outlined previously, we suppose to have constructed a
solution ut of (19) with w* = W j which satisfies only the following conditions:

u* = dut = ° at x = °
I dx

and

d2 *U j 2 *dx 2 +F U j =I- ° at x = 1.

We now multiply (17) by ut and (19) by Uj and integrate over (0, 1) to obtain finally

(21)
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Thus if the expression in parentheses in (21) is not zero, then U i = 0 at x = 1 and this
along with the other four boundary conditiollS as given by (18) would imply that the
system has only a trivial solution, i.e. {uJ == O. Thus we must have

d2 u:" du*
-~'+F2

_' -2if3Fw.u* = 0 at x = 1dx2 dx I I

and, therefore, the sets {wJ and {w{} are identical.
To investigate orthogonality let us consider

(22a)

and

(22b)

Multiplying (22a) and (22b) by uj and U;, respectively, and integrating over (a, b), the
following is obtained if we take a difference of the resulting equations:

f {uj(PUj-WiQUi)-Ui(P*Uj-WjQ*uj)} dx = 0

which reduces to

(wj-W j)f uiQ*uj dx = 0;

Thus, if Wi #- Wj' we have

fUjQ*uj dx = 0;

(Wj-W;)f
b

ujQuidx = O.
a

(23)

which are the modified bi-orthogonality relationships.
The expression given by (23) is analogous to the orthogonality of the eigenfunctions

of self-adjoint problems. For the investigation of several initial value problems in self­
adjoint systems it is expedient to normalize the eigenfunctions. It turns out that a general
normalization for the present case does not follow. The results of certain special cases,
however, are known. Thus when Q = 1, Ince [15] has shown that

Further, it may be asserted that when Q is independent of w, normalization may be
achieved by

(24)

Let us now investigate the extremum property of the eigenvalues Wi' We write

(25)
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(26)

(27)

Taking the variation of (25) in such a way that c5u, and c5u*, satisfy the boundary condi­
tions (3) and (12), respectively, we obtain

c5w j fb U(Qu jdx+w; fb {c5U(QU j+bWjU( :QUi+U(Qc5Uj} dx = fb (c5u(Pu j+u(PbuJ dx
a a Wi a

which may be rearranged to yield

c5w. = S~ {bU((PUi-WiQUi)+U((Pbuj-wjQc5uJ} dx
, S~ ut[Qui+(oQ/owj)u;] dx

The second term within braces in the numerator of (26) may be transformed, using (13),
to yield the following:

c5w. = S~ c5u((Pu; -WiQUi)dx +S~ buj(P*u( - wiQ*un dx
I S~ Ut[QUi +(oQ/owi)u;] dx

Hence, if equations (1) and (11) are obeyed, c5wj is zero to first order for all small, arbitrary
variations in c5ui and bur satisfying (3) and (12), respectively. Obviously, the converse is
also true. Thus a definite statement may be made regarding the error involved in stipulating
that the eigenvalues are stationary values.

During this search for obtaining expressions which yield stationary eigenvalues, it was
discovered that another functional of Uj and U( also exists which has similar properties.
Approximate solutions based upon this functional parallel the method of least squares
in self-adjoint boundary value problems and, therefore, a restatement of the least squares
technique for nonself-adjoint systems is formulated in a later section on other approximate
methods.

4. AN APPROXIMATE METHOD OF STABILITY ANALYSIS

The extremum property of the eigenvalues Wj, as expressed by (27), suggests an approx­
imate procedure for their determination, in the spirit of approximate methods for self­
adjoint systems based on variational principles. We may select two sets of trial functions
uj(a 1 , az , ... ) and u((aj, ai, ... ) which satisfy the appropriate boundary conditions and
contain undetermined parameters aj and aj. An approximate expression ofthe eigenvalues
W is obtained, by using equation (25), as a function of these parameters. A stationary value
of W is then obtained by determining the parameters from equations of the type

ow ow
-;- = 0; ~ = O. (28)
vaj va)

Considering the general nature of the problem under investigation, it is difficult to
say what would be the best choice in the selection of trial functions. Certainly any informa­
tion, such as symmetry, or prior experience with related problems should be exploited,
but there seems to be no way available at present to do this systematically. Usually,
however, several sets of approximating functions may be available and a selection may be
made either on the basis of ease of integrations or based upon rapid convergence of the
problem. Note that for good approximations in most situations, the sets of trial functions
should be complete in the domain of the problem. In hydrodynamic and hydromagnetic
stability problems Chandrasekhar [2J employed complete sets of eigenfunctions by solving
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one or another lower-order, simpler but related eigenvalue problem on the same domain.
Lee and Reynolds [16J have discussed the use of orthogonal polynomials in the stability
of parallel flows. Since, in all these problems the original and the adjoint boundary
conditions were identical, the analysis was simplified. A further discussion of this aspect
will follow.

Let us assume that we have selected two sets of linearly independent trial functions
vi(x) and vt(x), i = 1,2, ... efJ, both of which span the domain of the system. These sets
satisfy their respective boundary conditions (3) and (12) and thus they may be identical
only if (3) and (12) represent the same boundary conditions. With the help of unknown
coefficients ai and at, the following approximations are assumed:

u(x) = I aivi(x)
i= 1

x

u*(x) = I atv*(x).
i= 1

(29a)

(29b)

Now, we construct an infinite-dimensional space in aI' a2 , . .. ,aj, a!, . .. , in such a way
that the eigenvalue w is determined as an extremum value in this space. For this purpose
consider the following integral

W fb u*Qu dx = fb u* Pu dx
a a

which, after substitution of (29), yields

f L.;l (PVm-WQvm)v:ama:] dx = O. (30)

It is well to emphasize at this point that the coefficients of the operator Q are functions
of w. Treating (30) as an implicit function of w in am and a:, we obtain the following
derivatives with respect to am and a: :

(31)

and

(32)

In order to obtain a stationary value of w we must set aw/aam = aw/aa: = 0 in (31)-(32)
to obtain

(33)

and

(34)
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Equations (33) and (34) are two linear homogeneous matrix equations in a: and an' which
are the transpose of each other. Therefore, their eigenvalue w will be the same. In the
sequel we will consider only (34) which yields the following secular equation:

(35)

(36)

where

Amn = f PVmv~ dx

Bmn = f QVmv~ dx.

The determinant Ll is of infinite order, but in practice usually a good approximation may
be achieved by retaining a finite number of terms.

5. OTHER APPROXIMATE METHODS

We now wish to analyze the relationships between the adjoint variational method
proposed in the present study and several other methods, in particular the method of
weighted residuals, the Galerkin procedure and the method of least squares. Several
mathematical aspects of these metilods, such as convergence and estimation of error,
are known in the case of self-adjoint problems [17, 18], and their application to a general
problem, not necessarily linear and self-adjoint, is justified only heuristically.

Examining the general aspect of nonconservative systems in which the processes
involved, such as dissipation and exchange of energy between restoring and applied
forces, are irreversible, it is appropriate to mention briefly some recent developments in
heat conduction and other transport phenomena [19-21]. Based upon the concept of
local potential, Glansdorff and Prigogine [19, 22, 23] have developed a restricted variational
principle. Certain applications and generalization of this principle beyond heat conduction
and transport phenomena have been made; however, its physical significance is not
sufficiently clear to investigate the problem of elastic stability of nonconservative systems.
Roberts [24] has shown that the technique of Glansdorff and Prigogine is equivalent to a
particular form of Galerkin's method when applied to certain steady-state situations.
Biot's treatment of Lagrangian thermodynamics [20,21] centers on certain variational
formulation. His technique permits approximate solutions of problems involving non­
linearities. This method, however, has not been applied to investigate solutions of systems
under discussion.

In the method of weighted residuals, one stipulates that the trial solution satisfies
the differential equation (1) in some definite sense (see a review article by Finlayson and
Scriven [25]). This notion is made more specific by requiring that the weighted integrals
of the residuals are set equal to zero:

<fj , (Pg-wQg) = 0; j = 1,2, ... , N (37)

where

<f,g) = f fgdx
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represents a spatial average or inner product, f j is a prescribed weighting function and g
is a trial solution. The selection of trial functions gj remains somewhat dependent on the
user's intuition and experience. The criteria discussed earlier, however, are valid even in
this case and there is no unified approach to make the best choice which always gives
accurate and rapidly convergent results. The trial solution g is expressed as

N

g(x) = L aigi(x)
i~ 1

a substitution of which in (37) results in

N N

L ai{<fj , Pg;) -w<ij, Qg;)} == L aj(Ajj-wBj;) = O.
i~ 1 i~ 1

(38)

Thus, by comparing (38) with (33) we find that the form by which w is determined is
identical.

In the past, not much was known regarding the selection of the weighting functionsfj'
which yields an estimation of the error involved. In view of the present development it
may now be emphasized that a proper choice of the weighting functions is the one that
satisfies the adjoint boundary conditions (12) and, therefore, yields stationary values in the
space of trial functions for infinitesimal variations. Because Galerkin's method is a special
case of the method of weighted residuals (fj == g), it suffers from the same limitations.
However, if the adjoint boundary conditions (12) coincide iclentically with (3), the proposed
adjoint variational and Galerkin methods are formally similar.

6. REFORMULATION OF THE METHOD OF LEAST SQUARES

The method of least squares is also a possible tool available for approximate calcula­
tions of the eigenvalues. Although this particular method has not been widely employed
in stability problems, it seems desirable to investigate certain aspects of this method by
means of the present analysis. In order to understand clearly the method of least squares
as applied to nonself-adjoint eigenvalue problems, let us consider the regular problem
by assuming Q == 1.

Mikhlin [17, chapter X] has discussed certain mathematical aspects of the method
of least squares as applied to self-adjoint boundary value problems. For this group of
problems the method reduces to the solution of the following eigenvalue problem:

N N

«R-w)g,Rg) == L a;{<Rg;, Rgj)-w<gj, Rg)} '= L a;(Aij-wBj) = 0 (39)
i=l i= 1

where R is a self-adjoint operator and gj are a set of trial functions which satisfy the
boundary conditions associated with R. Mikhlin has shown that if {gJ is a complete set,
the solution converges to the exact one. In this form the application of this method to
nonself-adjoint systems seems dubious and the purpose now is to investigate the usefulness
of the following reformulation of the method of least squares. We consider the following
integral:

(40)
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(41)

(43)

where p* is an adjoint operator to P as defined in (5), Uj and U[ are eigenfunctions of the
original and the adjoint systems corresponding to the same eigenvalue Wi'

Taking the variation of(40) in such a way that oU j and but satisfy the respective boundary
conditions, we find

"' _ <P*OU[, (Puj-wiU j» +<P*U[, (Pbuj-wibu;)
uW j

- < * *) .uj,P Uj

By using the property similar to (13), the second integral in the numerator of (41) IS

transformed to yield finally

"' _ <P*OU[, (Puj-Wju;) +«Pbuj, (P*U[ -WjU[» (42)
uW j - < * *) .uj,P Uj

Thus, if the field equations of Uj and U[ are obeyed, we find from (42) that bWi is zero to
first order for all small, arbitrary variations in oU j and but satisfying the corresponding
boundary conditions. Again, the converse is also true.

Thus we find that the integral expression (40) has properties similar to (25) and
consequently a definite statement may be made in stipulating that eigenvalues obtained
from (40) are stationary values. Based upon the discussions of the previous sections, we
may select trial functions vj(x) and V[(x) and obtain, similarly, from (40) the following set
of linear homogeneous matrix equations in unknown parameters aj and at,

N N

L aj{<Pvj, P*vj)-w<vi, P*v)} == L aj(Aij-wBj) = 0
i= 1 j::= 1

and
N N

L aj{<Pvi, P*vj)-w<vj, p*vj)} = L a;(Aji-wBj;) = 0
i= 1 j== 1

(44)

from which approximate calculations may be made for {w;}. We notice that equations
(39) and (43) are similar in form and, therefore, may suggest that (40) is a restatement of
the principle of least squares for nonself-adjoint eigenvalue problem. If the system is
self-adjoint, then P = p* and U = u* and (40) reduces to the form as described by Mikhlin.
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A6cTpaKT-l1ccne,uyeTcSI HecaMoconpSIlKeHHall 'la,ua'la Ha co6cTBeHHble 3Ha'ieHIHI 11 yKa3blBaeTCSI, 'ITO
06bl'lHO I1CllOnb30BaHHble llpl16nl1lKeHHble MeTOL\bl, B po,ue clloc06a ranepKI1Ha, MeTOL\a BeCOBblX Bbl'leTOB
H MeTOL\a HaHMeHbWHX KBaL\paTOB, HCllblTblBaKlT HeL\OCTaTOK Bap"aUI10HHOrO (jJopMaIlI13Ma. KorL\a OHI1
npl1MeHSIKlTCll B CBOI1X npe.uI'l.uYlI.lI1X (jJopMax, Tor.ua OHI1 He .uaKlT CTaUI10HapHbiX c06CTBeHHblX 1Ha'leHI'lH
I'l C06CTBeHHbiX (jJYHKUl1iL O,uHaKO, c nOMOlI.lbKl conplilKeHHOH CI1CTeMbl, MOlKHO onpe.uenl1Tb HeKOTopblH
aHaIlOrl1'1HblH Bapl'laUHOHHbIH (jJopManI13M. B HaCTOlllI.leH pa60Te yKa3blBaeTCll, 'ITO npl1MeHllll KaK
CJIeL\yeT, BHOBb, MeTO.u Hal1MeHbWI1X KBa.npaTOB, MOlKHO nOJlY'lI1Tb CTaUI10HapHble c06CTBeHHbie 3Ha'leHI111.
nOKa1aHO, 'ITO L\I1SI 60Ilee Wl1pOKoro KJIaCCa, Bbl6paHHoro L\Jlll I1CCIIeL\OBaHI1H, CYlI.leCTBYKlT HeKOTopble
cBolicTBa conpSIlKeHHOH np06neMbl Ha c06CTBeHHbIe 3Ha'leHI111, 111BeCTHble TOIlbKO JlJIll OrpaHI1'1eHHOH
rpynnbl.


